LLLT for Multiple sclerosis (MS) : Nice work Jeri-Anne, Janis and Chukuka

Original article  from http://www.sciencecodex.com/light_as_medicine-121445

Multiple sclerosis (MS) causes progressive paralysis by destroying nerve cells and the spinal cord. It interrupts vision, balance and even thinking.

On a suggestion from a colleague, Jeri-Anne Lyons decided to test how the disease responded to a radical therapy – exposure to a certain wavelength of light called near-infrared (NIR).

“Never in a million years did I think it would help,” says Lyons, an associate professor of biomedical sciences at the University of Wisconsin-Milwaukee (UWM), who studies the role of the immune response in MS.

But it did. In rodent models, early MS-like symptoms were treated with exposure to NIR light for a week, alternating with a week of no light. The clinical condition of the mice improved.

Professor Janis Eells, who shared the idea with Lyons, had the same initial reaction after she used NIR therapy on rats to treat blindness caused by poisoning, a condition thought to be permanent. Repeating experiments again and again, she found that certain doses of NIR light allowed lab animals to regain their sight.

Scientists have known for years that certain wavelengths of light in certain doses can heal, but they are only now uncovering exactly how it works, thanks in large part to three UWM faculty researchers, including Chukuka S. Enwemeka, dean of UWM’s College of Health Sciences who is internationally known for his work in phototherapy.

Enwemeka researches the effects of both NIR and blue light in the visible range on healing wounds. Among his discoveries is that some wavelengths of blue light can clear stubborn infections – even MRSA, the antibiotic-resistant “superbug” form of Staphylococcus aureus.

Together, the UWM cluster has found that NIR and blue light repair tissue in dramatically different ways, but both act on the same enzyme in the cell’s energy supply center: the mitochondria.

The studies have revealed key information about managing the effects of aging and disease.

A bodyguard

So how is light accomplishing such wonders?

In applying NIR light therapy to MS, Lyons has identified the right timing and dose. But she’s also dug deeper, analyzing the effect the light had on the activities of the animal’s genes. It turns out, molecules that would make the disease worse were weakened after exposure to the light, and the ones responsible for improvement were strengthened.

Chukuka S. Enwemeka, dean of UWM’s College of Health Sciences, conducts an experiment with research associate Violet Bumah. Among his discoveries: blue light in a certain wavelength kills the antibiotic-resistant “superbug” form of Staphylococcus aureus.

Eells says NIR light acts on the mitochondria and a particular enzyme, cytochrome C oxidase, to stimulate cell repair.

Light can do all that?

“We’re not talking about white light [all wavelengths in the visible spectrum combined] as treatment, but only certain wavelengths, at a certain intensity, for a certain amount of time,” says Lyons. “Like ingested medication, it’s all about the dose.”

Determining the best wavelength of light for phototherapy is a difficult task. Studies show that 670 nanometer (nm) and 830 nm light are beneficial, but 730 nm is not. The other difficult task is determining the appropriate dose and dose regimen for delivering the light.

Promising leads

Even more exciting is phototherapy’s potential to improve a host of other degenerative diseases. Damaged mitochondria lead to a rise in destructive “free radicals,” which play a key role in aging and cancer.

“It’s why we try to put antioxidants into our diets,” says Lyons, “to fight that process.”

One source of free radicals comes from the inflammation caused by the body’s immune response. The researchers have found that after an injury or illness triggers the immune response, NIR light resets the mitochondria so they function normally again.

“NIR reduces inflammation,” says Eells. “If you can tone down the inflammation in an eye disease like retinitis pigmentosa, you slow the progression of the disease.”

A similar observation with inflammation occurred in a study on recalcitrant bedsores, she adds. Wounds treated with phototherapy healed two and a half times more quickly than untreated wounds.

“Chronic non-healing wounds are ‘stuck’ in the inflammatory phase of wound healing” The light removes that obstacle,” says Eells.

She has been working with Tim Kern at Case Western Reserve in treating an animal model of diabetic retinopathy with NIR light, which has been shown to slow progression and reduce the severity of the condition. Kern hopes to initiate a clinical trial in the near future.

A killer

NIR light heals by ensuring that cytochrome oxidase binds with oxygen to turn on protectors and stimulate cell metabolism. Blue light, on the other hand, causes a toxic environment when the immune response has been triggered. That poisonous effect hastens healing of topical wounds by killing bacteria that cause infection.

The question is, “What gives light in the longer wavelength its antibiotic effect?”

Enwemeka’s studies suggest that blue light also acts on the mitochondrial enzyme site, but allows cytochrome oxidase to bind with nitric oxide, a free radical that is elevated in the immune response. It’s a pairing that poisons the invader.

This theory is still unproven, but the therapy has achieved undeniable results in the lab with antibiotic-resistant MRSA. Enwemeka demonstrated that one dose of irradiation killed as much as 92 percent of two pervasive strains of MRSA.

He is working to improve that success rate by getting the light to penetrate deeper in order to finish off the few colonies that survive irradiation.

Limited availability

Enwemeka is leading a research effort in Brazil and at UWM that he hopes will ultimately lead to clinical use of NIR and blue light in the U.S. for the treatment of wounds.

In the six years since he was asked to test the effects of blue light on MRSA, he says, research on the topic has picked up. But currently, the U.S. Food and Drug Administration (FDA) has not sanctioned the use of blue light in treating wounds, or NIR light for conditions other than wounds and pain.

With so much success, why isn’t phototherapy being used more widely?

“It’s considered alternative therapy in Western medicine. It seems too simple for people to accept,” says Lyons.

What the FDA is waiting for, says Enwemeka, is confirmation from a large-scale clinical study before approving phototherapy for a wider variety of ailments. It’s something Enwemeka and Harry Whelan, a UWM alumnus and physician-researcher at the Medical College of Wisconsin, are determined to accomplish.

“To see people who have not had relief see their wounds heal and not return,” says Enwemeka of the Brazilian patients who have benefited from therapy, “is very touching.”

Janis Eells (left) and Jeri-Ann Lyons, professor and associate professor of biomedical sciences at UWM, irradiate cells with NIR light, which has been shown to have beneficial effects on cell function.

Source: University of Wisconsin – Milwaukee

About James Carroll

Founder and CEO at THOR Photomedicine Ltd. About THOR
This entry was posted in Special Feature. Bookmark the permalink.

5 Responses to LLLT for Multiple sclerosis (MS) : Nice work Jeri-Anne, Janis and Chukuka

  1. Polly Anne Guinn says:

    I was diagnosed with MS in the 1980’s. Your 2013 article on using NIR and Blue Light therapy was very interesting, as I have searched for years for a common sense source for improving or even reversing some of the symptoms of this insidious disease.

    The only true improvement that I ever found was to search out my own hidden food allergies.

    I am interested in more information on the NIR studies done by Jeri-Anne Lyons and Chukuka Enwemekaat the University of Wisconsin as it relates to MS. The article I just read is from 2013, so, have there been any new developments or treatment protocols. Are there clinical trials available? Who should I contact?

    If it’s not possible to get NIR, are there other forms of LLLT I could use, or LLLT devices you recommend? MS is an insidious illness, but I’ve always felt that if my body can get sick, it can also get well.

    I look forward to your reply.

    Thank you,
    Polly Guinn

    • Karen says:

      Hi Polly
      there is curently very little clinical research on MS in humans
      Here is a blog James wrote about promising MS research: https://blog.thorlaser.com/lllt-for-multiple-sclerosis-ms-nice-work-jeri-anne-janis-and-chukuka/
      Like many things, it probably would not hurt to try, but at present,any LLLT treatment for MS is experimental, with insufficient clinical trials to provide evidence of efficacy and recommendations for dosage / best practice treatment.
      Human trials are not yet underway.

    • Beth Nunns says:

      Hi Polly I have had MS for 10 years and use NIR on my head and also on my bad knee. My knee is a lot better. Can’t say much about the brain, but no deficit or relapse in past four years so doing well. It worked amazingly on an arthritic knee. Cheers, Beth

  2. Anna E. OBrien says:

    Hi, this is most interesting. It certainly looks like LLLT holds much promise for the treatment of many things. I as well as three siblings, have MS and we are often on the search for successful treatments. Have human trials begun?

    • Karen says:

      Hi Anna
      there are no published human trials on PBMT for MS yet but several interesting cases are coming our way.
      We are hoping human trials will take place once researchers have secured funding.

Leave a Reply to Anna E. OBrien Cancel reply

Your email address will not be published. Required fields are marked *